Sensitive electrochemical immunosensor based on three-dimensional nanostructure gold electrode

نویسندگان

  • Guangxian Zhong
  • Ruilong Lan
  • Wenxin Zhang
  • Feihuan Fu
  • Yiming Sun
  • Huaping Peng
  • Tianbin Chen
  • Yishan Cai
  • Ailin Liu
  • Jianhua Lin
  • Xinhua Lin
چکیده

A sensitive electrochemical immunosensor was developed for detection of alpha-fetoprotein (AFP) based on a three-dimensional nanostructure gold electrode using a facile, rapid, "green" square-wave oxidation-reduction cycle technique. The resulting three-dimensional gold nanocomposites were characterized by scanning electron microscopy and cyclic voltammetry. A "sandwich-type" detection strategy using an electrochemical immunosensor was employed. Under optimal conditions, a good linear relationship between the current response signal and the AFP concentrations was observed in the range of 10-50 ng/mL with a detection limit of 3 pg/mL. This new immunosensor showed a fast amperometric response and high sensitivity and selectivity. It was successfully used to determine AFP in a human serum sample with a relative standard deviation of <5% (n=5). The proposed immunosensor represents a significant step toward practical application in clinical diagnosis and monitoring of prognosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of an Electrochemical Immunosensor for Determination of Human Chorionic Gonadotropin Based on PtNPs/Cysteamine/AgNPs as an Efficient Interface

An ultrasensitive electrochemical immunosensor for the detection of tumor marker human chorionic gonadotropin (hCG) was developed with a limit of detection as low as 2 pg mL-1 in phosphate buffer. The Platinum nanoparticles (PtNPs) were electrodeposited to modify the gold surface and to increase enlarging the electrochemically active sites, resulting in the facilitation of electron exchange. Cy...

متن کامل

3D label-free prostate specific antigen (PSA) immunosensor based on graphene-gold composites.

Highly sensitive and label-free detection of the prostate specific antigen (PSA) remains a challenge in the diagnosis of prostate cancer. Here, a novel three-dimensional (3D) electrochemical immunosensor capable of sensitive and label-free detection of PSA is reported. This unique immunosensor is equipped with a highly conductive graphene (GR)-based gold (Au) composite modified electrode. The G...

متن کامل

Electrochemical impedimetric biosensor based on a nanostructured polycarbonate substrate

This study integrates the techniques of nanoelectroforming, hot-embossing, and electrochemical deposition to develop a disposable, low-cost, and high sensitivity nanostructure biosensor. A modified anodic aluminum oxide barrier-layer surface was used as the template for thin nickel film deposition. After etching the anodic aluminum oxide template off, a three-dimensional mold of the concave nan...

متن کامل

Highly Sensitive Amperometric Sensor Based on Gold Nanoparticles Polyaniline Electrochemically Reduced Graphene Oxide Nanocomposite for Detection of Nitric Oxide

A sensitive electrochemical sensor was fabricated for selective detection of nitric oxide (NO) based on electrochemically reduced graphene (ErGO)-polyaniline (PANI)-gold nanoparticles (AuNPs) nanocomposite. It was coated on a gold (Au) electrode through stepwise electrodeposition to form AuNPs-PANI-ErGO/Au electrode. The AuNPs-PANI-rGO nanocomposite was characterized by Field Emission Scanning ...

متن کامل

A Three-Dimensional, Magnetic and Electroactive Nanoprobe for Amperometric Determination of Tumor Biomarkers

A novel electrochemical immunosensor for tumor biomarker detection based on three-dimensional, magnetic and electroactive nanoprobes was developed in this study. To fabricate the nanoprobes, negatively charged Fe(3)O(4) nanoparticles (Fe(3)O(4) NPs) and gold nanoparticles (Au NPs) were first loaded on the surface of multiple wall carbon nanotubes (MCNTs) which were functioned with redox-active ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2015